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Abstract

A new approach for the analysis of crack propagation in brittle materials is proposed\ which is based on
a combination of fracture mechanics and continuum damage mechanics within the context of the _nite
element method[ The approach combines the accuracy of singular crack!tip elements from fracture mechanics
theories with the ~exibility of crack representation by softening zones in damage mechanics formulations[
A super element is constructed in which the typical elements are joined together[ The crack propagation is
decided on either of two fracture criteria^ one criterion is based on the energy release rate or the J!integral\
the other on the largest principal stress in the crack!tip region[ Contrary to many damage mechanics
methods\ the combined fracture:damage approach is not sensitive to variations in the _nite element division[
Applications to situations of mixed!mode crack propagation in both two! and three!dimensional problems
reveal that the calculated crack paths are independent of the element size and the element orientation and
are accurate within one element from the theoretical "curvilinear# crack paths[ Þ 0887 Elsevier Science Ltd[
All rights reserved[

0[ Introduction

Various numerical approaches have been developed for the analysis of crack propagation in
complex mechanical structures consisting of brittle\ linearly elastic materials[ These approaches
can be divided into two categories] those based on fracture mechanics and those based on con!
tinuum damage mechanics[ In this paper we shall brie~y discuss both theories\ fracture and
damage\ and their particular advantages and disadvantages in _nite element applications[ The
purpose of the present paper is to describe a numerical tool for the analysis of "dynamic# crack
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propagation\ based on the _nite element method and on a combination of fracture mechanics
principles and damage mechanics principles[ This combination will be chosen such that the
disadvantages of fracture and damage mechanics in a _nite element method are eliminated\ while
their speci_c bene_ts are retained[

The major advantage of fracture mechanics approaches is that they have been studied extensively
such that a broad range of applicability has been found[ These approaches are based on the _nite
element method which is commonly used for the solution of complicated mechanical problems
including non!linear constitutive behaviour and:or large geometries "Hughes\ 0876^ MacNeal\
0883#[ In order that the numerical solution incorporates the stress singularity which arises at the
crack tip in linear elasticity theory\ Barsoum "0865#\ Stern and Becker "0867#\ and Stern "0868#
have developed special _nite elements which are positioned at the crack tip\ and which possess a
high degree of accuracy[ A strong disadvantage occurs when such numerical methods are applied
to problems of dynamic fracture[ Because of the material rupture and the creation of new crack
surfaces\ the geometry of the elastic body changes continuously[ As a result\ the _nite element
division requires continuous adaptation\ including a translation of the special crack!tip elements
with the moving crack tip[ Such moving _nite element techniques often assume that the crack path
is straight or otherwise known beforehand "Nishioka et al[\ 0889#[ Since crack propagation along
arbitrary curved paths requires the adaptation of many _nite elements\ the use of fracture mechanics
approaches is generally restricted by the large computational e}orts involved in the adaptations
of the element divisions[ In order to avoid these di.culties\ van Vroonhoven "0885a\ b# and van
Vroonhoven and de Borst "0886# proposed an uncoupled numerical fracture method\ in which the
dynamic e}ects "such as wave propagation# and the crack propagation have been partially
uncoupled[ This method produces reliable results for the initial stages of crack propagation\ but
due to the uncoupling of the dynamic e}ects\ deviations in the crack paths occur near the moment
of crack arrest or _nal collapse[ In order to include the interaction between the dynamic e}ects
and the crack propagation in a coupled approach\ the possible application of continuum damage
mechanics is investigated[

Approaches based on continuum damage mechanics have an advantage over those based on
fracture mechanics\ in the sense that continuous adaptation of the _nite element division has
become super~uous because material failure is represented by internal damage and changes in the
geometry do not occur[ There also exist some complications\ however[ In particular\ severe material
degradation may lead to softening behaviour] the internal stresses decrease with increasing strain[
As a result\ the mathematical formulation of the boundary value problem becomes ill!posed[ In
such cases it is often seen that the damage increase is highly susceptible to small variations in the
local stress values and in the _nite element division\ leading to pathological element dependencies[
On one hand\ these dependencies concern the width of the damaged zone] re_nement of the element
division generally leads to higher values of the damage in a region of smaller width[ This e}ect is
referred to as {{localization|| and has been studied by various authors\ among others by Baz³ant
and Cedolin "0880#\ de Borst "0882#\ de Borst et al[ "0882#\ Lasry and Belytschko "0877#\ Mu�hlhaus
"0878#\ Needleman "0877#\ and Sluys "0881#[ On the other hand\ the orientation of the _nite
elements plays an important role] it is often seen that damage progresses along element boundaries
and not in the required direction as derived from a fracture mechanics analysis[ These problems
even occur for simple geometries and restrict the applicability of continuum damage mechanics in
its original form[
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In order to make pro_table use of the positive aspects of both theories\ the idea of a combined
fracture:damage approach for the analysis of failure phenomena has been proposed by Horsten
and van Vroonhoven "0883#\ van Vroonhoven "0885a#\ and van Vroonhoven and Horsten "0885#[
The numerical approach proposed in this paper is based on their idea and consists of the following
steps[ Subsequent positions of the crack tip are calculated using fracture mechanics and special
_nite elements\ such that the crack path is known at every moment of the fracture process and
with highest possible accuracy[ Large!scale adaptations of the _nite element division are avoided
by the use of continuum damage mechanics to describe the {{tail|| of the crack[ At these positions
the Young|s modulus of elasticity is reduced in the direction perpendicular to the crack surfaces[
In fact\ one should not speak of a crack in the strict sense but of a damaged zone\ since there is no
geometrical discontinuity in the material[ This combined approach unites the accuracy of the
special crack!tip elements in fracture mechanics with the ~exibility of crack representation in
damage mechanics and is an e}ective means for the analysis of crack propagation by the _nite
element method[ We shall investigate the possible dependencies on the element division\ which
often occur in damage mechanics applications[ Such dependencies should not be present to ensure
the correctness of the combined fracture:damage approach[

1[ Discussion of fracture and damage mechanics

Fracture mechanics methods are characterized by the assumption of a sharp crack in an elastic
body[ The deformation of the elastic body is expressed in terms of displacements ui\ strains oij\ and
stresses sij with indices i\ j � 0\ 1\ 2 or x\ y\ z[ The crack introduces a material discontinuity and\
within the scope of linear elasticity theory\ the crack tip becomes a singular point where the stresses
attain in_nite values[ The singular behaviour of the stress components is proportional to the
inverse square root of the distance r to the crack tip and the singularity is normalized by stress
intensity factors[ When the crack surfaces are positioned along the negative x!axis with the crack
front along the z!axis and with the crack tip at the origin\ the singular stress behaviour can be
represented in the simpli_ed form

sij"r\ u# �
K

z1pr
fij"u#\ "0#

where K is a stress intensity factor related to the external forces and the boundary conditions[
Three stress intensity factors exist] KI\ KII\ and KIII\ each associated with a di}erent fracture mode[
The angular variations fij"u# are well!known functions of the polar angle u\ depending on the
fracture mode\ and are given by Broek "0875# and Cherepanov "0868#[

The stress singularity introduces two complications[ Firstly\ the yield stress will be exceeded at
positions su.ciently close to the crack tip[ Fortunately\ England "0854# and Rice "0857# have
shown that fracture of brittle materials involves only limited plasticity or small!scale yielding
con_ned to a very small neighbourhood of the crack tip[ Secondly\ standard _nite elements have
linear or quadratic interpolation of the displacements and\ consequently\ constant or linear internal
stresses[ These elements are thus inappropriate for an accurate description of the near!tip variables
and special _nite elements have been developed[ For example\ Stern and Becker "0867# and Stern
"0868# have suggested the use of square!root functions zr for the interpolation of the displacements
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Fig[ 0[ Collapsed elements in "a# two and "b# three dimensions[

in triangular _ve!node and six!node elements[ Barsoum "0865# has suggested the use of collapsed
quadrilateral eight!node elements with quarter!point nodes on the element sides adjacent to the
crack tip[ The resulting element has a triangular shape and is shown in Fig[ 0[ In three!dimensional
fracture problems\ collapsed hexahedral 19!node elements are used[ The onset of fracture and the
direction of crack propagation are usually determined from the magnitude and the ratio of the
stress intensity factors "Broek\ 0875^ Cherepanov\ 0868# or from a criterion based on energetic
principles "Cherepanov\ 0868^ Freund\ 0889^ Rice\ 0857#[

Damage mechanics methods are characterized by the assumption of a smeared crack where the
material remains continuous\ while the material strength decreases due to internal damage[ A
parameter D is introduced to represent the material degradation^ see for example Chaboche "0870\
0877a\ b#\ Kachanov "0847# and Lemaitre "0873#[ Material damage that occurs in some anisotropic
fashion can be represented by a set of damage parameters\ such as a vector Di or a tensor Dij

"Chaboche\ 0870^ Murakami\ 0877#[ The softening behaviour of a deformable body subjected to
uniaxial loading is governed by the following constitutive relation between the stress s and the
strain o in a simple one!dimensional form]

s �"0−D#Eo\ "1#

where E is the Young|s modulus pertaining to the original\ undamaged material[ This relation is
illustrated in Fig[ 1 for general ductile failure and for brittle failure[ Generally\ the damage
parameter D at time t depends on the history of the strain[ According to Chaboche "0887b#\ the
maximum strain level in time serves as a threshold for the damage increase for a certain class of
materials and we may write D"t# � D"omax# with omax"t# � max "o"t0# =t0 ¾ t#[ The relation between

Fig[ 1[ StressÐstrain relations with softening material behaviour for "a# ductile and "b# brittle failure[
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D and omax is usually postulated on the basis of experimental results[ For situations where both the
strain and the damage increase monotonically\ we may write D � D"o# because omax"t# � o"t#[

We distinguish several moduli\ depending on the loading situation[ Firstly\ when the body is
loaded or unloaded and damage does not occur "D � 9#\ we use the original Young|s modulus E
and we have the stressÐstrain relation s � Eo[ Secondly\ when the body is loaded and the damage
increases "o¾ × 9 and Dþ × 9#\ the stressÐstrain relation is written in incremental form] s¾ � Et o¾\ and
we use the tangent modulus

Et �
ds

do
�""0−D#−D?"o#o#E\ "2#

where the prime ? indicates di}erentiation with respect to o[ Thirdly\ when damage has occurred
and the body is unloaded "o¾ ³ 9#\ we use the e}ective modulus Ed �"0−D#E of the damaged
material[ The stressÐstrain relation in this case is given by s � Ed o and is also valid for reloading
as long as damage increase does not occur\ i[e[\ as long as o"t# ³ omax"t#[

It is evident from "2# that the tangent modulus may become negative when the damage D and
the damage increase D?"o# are too large[ A negative tangent modulus has the severe implication
that one!dimensional dilatational wave speed cd\ which is de_ned by

c1
d �

Et

r
\ "3#

becomes imaginary[ The corresponding wave equation changes its type from hyperbolic to elliptic
and the mathematical problem becomes ill!posed\ which leads to several peculiar {{localization||
phenomena[ For example\ the energy dissipation associated with the damage increase takes place
in an in_nitesimally small band "which can be compared to a discrete crack# and the strain in this
band attains an in_nite value\ while the strain in the surrounding material decreases "unloading#[
As a consequence\ in _nite element applications\ a strong dependence on the size of the softening
elements is observed regarding the amount of dissipated energy\ the global structural response\
and the peak value of the strain after localization[ An overview of localization problems is given
in the work of Baz³ant and Cedolin "0880#[ Various solutions have been suggested\ which include]

"0# rate!dependent models where the stresses not only depend on the strains but also on the strain
rate "Sluys\ 0881^ Needleman\ 0877#^

"1# gradient!dependent models where the stresses depend on the strains and on the spatial deriva!
tives of the strains "de Borst et al[\ 0882^ Lasry and Belytschko\ 0877^ Sluys\ 0881#^

"2# Cosserat models where couple!stresses and microcurvatures are added to represent the under!
lying microstructure "Mu�hlhaus\ 0878^ de Borst\ 0882#[

2[ Description of the combined approach

From the preceding discussion it is clear that both fracture mechanics and continuum damage
mechanic possess speci_c advantages and disadvantages in _nite element applications[ Whereas
numerical methods based on fracture mechanics require frequent adaptations of the _nite element
division and use moving element techniques "Nishioka et al[\ 0889#\ methods based on damage
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mechanics su}er from sensitivity with respect to the element division and from damage localization[
Because of these complications\ a combination of fracture and damage mechanics within the
context of the _nite element method is investigated[ The combined fracture:damage approach is
based on the _nite element method plus a time!step algorithm and combines the accuracy of
fracture mechanics with the ~exibility of continuum damage mechanics[ For the sake of simplicity\
we start with two!dimensional "plane stress# problems[

2[0[ Construction of super element

As in any _nite element analysis\ we start with the division of the elastic body into subdomains[
We choose the improved four!node elements developed by Wilson et al[ "0862# and Taylor et al[
"0865#^ see also MacNeal "0883#[ These elements have an improved bending sti}ness so that the
displacements and the stresses are calculated correctly in the case of bending deformation[ The
performance of these so!called WilsonÐTaylor elements in such cases is far better than the per!
formance of standard four!node linear elements and is comparable to the performance of eight!
node quadratic elements "van Vroonhoven\ 0885a#[ The singular elements for fracture mechanics
applications "Barsoum\ 0865^ Stern and Becker\ 0867^ Stern\ 0868# are used at the crack tip by
replacing the original quadrangular element with four collapsed\ triangular elements[ One crack!
tip node\ twelve mid!side nodes\ and four quarter!point nodes are added to ensure the accurate
calculation of the singular stresses in the vicinity of the crack tip[ The additional nodes are marked
by open circles "�# in Fig[ 2 and the original nodes by _lled dots "ž#[ Since the displacements in
the singular elements are interpolated by quadratic shape functions on the sides opposite to the
crack tip\ it is necessary to apply variable!node elements "Hughes\ 0876# as a transition from the
singular elements to the four!node elements[ This combination of the four crack!tip elements and
the eight surrounding transitional elements is called a {{super element||[ The transitional variable!
node elements and the singular crack!tip element have 2×2 Gaussian integration points\ while the
WilsonÐTaylor elements have 1×1 Gaussian integration points[ The positions of the four corner
nodes of the quadrangular element which is replaced with the singular elements\ are adjusted in
such a manner that the four triangular elements have approximately the same size[ The super
element translates with the crack tip and its structure is similar to the element patterns which are
used in moving _nite element procedures based on fracture mechanics[

The additional nodes are regarded as {{slave|| nodes\ as opposed to the original {{master|| nodes
of the elements[ The slave nodes are eliminated at the super element level by means of static
condensation "Hughes\ 0876#[ It is noted that the " four# corner nodes of the singular crack!tip
elements are also eliminated and must also be regarded as slave nodes[ We proceed with the
calculation of the internal force vector Hm associated with the displacements um of the twelve
master nodes of the super element[ Since the twenty!one slave nodes lie in the interior of the super
element\ they do not convey nodal forces to the surrounding elements[ Denoting the displacements
of the slave nodes by us\ we obtain the following system of equations

$
Kmm Kms

Ksm Kss % = $
um

us %� $
Hm

9 % \ "4#

where the contributions of the twelve elements in the super element to the sti}ness matrix K have
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Fig[ 2[ Con_guration of the super element " four crack!tip elements and eight transitional elements# with surrounding
elements[ The crack is shown as a thick solid line and anisotropic damage is displayed by dashed lines[ Subsequent
positions of the crack tip are marked as ×\ while original nodes are indicated by ž and extra nodes by �[

been partitioned with respect to the master and the slave nodes[ Solving the second part of "4# for
us and substituting the result into the _rst part\ we obtain an expression for the {{condensed||
sti}ness matrix Kse of the super element]

Hm � Kse = um �"Kmm−KmsK
−0
ss Ksm# = um[ "5#

A smaller type of super element has also been considered "Horsten and van Vroonhoven\ 0883#[
This super element has two basic con_gurations^ see Fig[ 3[ When the crack tip is in the middle of
an element\ that element is split into four triangular crack!tip elements[ When the crack tip is near
a corner\ four elements are split into eight triangles[ Quarter!point nodes are added to incorporate
the singular stress behaviour\ but the extra mid!side nodes are not included[ As a result\ in either
con_guration\ the triangular elements resemble the element of Fig[ 0"a# but without the extra mid!
side node on the side opposite to the crack tip[ Consequently\ the displacements on that side show
linear behaviour[ This smaller super element did not provide su.cient accuracy near the crack tip
and has therefore been rejected[ On the other hand\ super elements of larger size were regarded as
too expensive because of the increase in computational e}ort and in assembly time[

The position of the crack tip is marked by × in Fig[ 2 and is calculated at every time step by
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Fig[ 3[ Con_guration of smaller super elements with "a# four and "b# eight crack!tip elements[

the procedure explained below[ Although the crack path is determined in a precise manner\ it is
not approximated by a piece!wise linear curve[ Instead\ we employ the concept of a {{smeared||
crack but in a di}erent form than that used by Rots "0880#[ The smeared crack concept provides
extra ~exibility in comparison with fracture mechanics procedures which require element splitting
or nodal!release techniques[ The {{tail|| of the crack is modelled with the use of damaged elements
showing softening behaviour[ We assume orthotropic behaviour of the damaged material] the
sti}ness in the direction perpendicular to the crack is reduced\ while the sti}ness parallel to the
crack retains the original value of the undamaged material[ The constitutive equations are given
by

&
oxx

oyy

1oxy
'� &

0:Ex −mxy:Ey 9

−nxy:Ex 0:Ey 9

9 9 0:Gxy
' = &

sxx

syy

sxy
' [ "6#

The expression for the stress components in terms of the strains is obtained by inversion[ The E!
moduli represent the tensile sti}ness in the coordinate directions\ while the G!modulus is related
to shear deformation[ The parameter nxy is the contraction ratio in the x!direction when the
material is subjected to tension along the y!axis\ whereas nyx is de_ned reversely[ The _ve elasticity
parameters are not independent\ because the stressÐstrain relations "6# must be symmetric[ Thus\
four independent parameters remain[ The presence of a crack implies a local reduction of the
sti}ness in only one direction[ Taking the x!axis in the direction parallel to the crack surfaces\ we
have for the damaged material that Ex � E\ Ey �"0−D#E\ and nyx � n\ nxy �"0−D#n\ where D is
the damage parameter and E and n are the Young|s modulus and the Poisson|s ratio of the
undamaged material\ respectively[ The shear modulus Gxy is independent of the other parameters
and may for example be chosen equal to the arithmetic\ geometric\ or harmonic mean of the values
Ex:1"0¦nyx# and Ey:1"0¦nxy#\ which are all acceptable choices from a thermodynamics point of
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view "van Vroonhoven\ 0885a#[ We take D � 9[888 in the numerical calculations\ resulting in a
reduction of Young|s modulus by a factor 0999[

In the construction of the super element it is assumed that a crack is present[ At any intermediate
time step of the fracture simulation\ we take the crack path from the previous time step\ which is
extended with the calculated crack increment[ At the start of the computation we must initiate a
crack\ whose location\ length\ and direction may be chosen arbitrarily[ There is one restriction]
the element containing the crack tip must be surrounded by eight other elements\ so that a super
element as in Fig[ 2 can be created[ This restriction also applies during the fracture simulation[
When the crack tip approaches the boundary of the elastic body and the construction of a super
element is no longer possible\ the fracture simulation is terminated[ The postulation of an initial
crack is a limitation of the combined approach\ in the sense that the crack initiation is not
determined by continuum damage mechanics methods[ This is not regarded as a major limitation\
because the location of crack initiation is often known beforehand "e[g[ the location of the highest
tensile stress# and because fracture mechanics methods instead of damage mechanics methods are
used in the crack!tip region to determine the crack propagation[ We also emphasize that the
present implementation of the combined approach admits the analysis of only one crack at a time[
The approach can easily be extended to the analysis of multiple cracks by the creation of multiple
super elements[

2[1[ Crack propa`ation

We now turn to the selection of a crack propagation criterion[ Because of the softening zone\
the in~uence of the crack is smeared out over a band of _nite width[ The global behaviour of the
damaged zone resembles the response of a physical discrete crack[ At the more detailed local level\
however\ there will occur deviations between discrete and smeared cracks[ For example\ the
distributions of the stresses and the strains near the crack path will be less accurate in the case of
a smeared crack[ As a result\ we cannot calculate stress!intensity factors by applying integral
expressions to the stresses along the crack\ as is usually done in fracture mechanics methods^ see
for example van Vroonhoven and de Borst "0886#[ It is the more suitable to employ a criterion
which focuses at the crack!tip region where fracture mechanics is applied\ such as the fracture
criterion based on the energy release rate and the J!integrals "Cherepanov\ 0868^ Freund\ 0889^
Rice\ 0857#[ For an in_nitesimally small contour C encircling the crack tip and with its end points
on the lower and upper crack surfaces\ the integrals Jk with index k � 0\ 1 or x\ y are de_ned by

Jk � gC

""W¦T#nk−sijnjui\k# ds\ "7#

where ni denotes the components of the outward normal to the contour and the variables
W � 0

1
sijoij and T � 0

1
ru¾iu¾i are the elastic and kinetic energy densities\ respectively\ with r the

density of the elastic material[ We employ the Einstein convention of summation over repeated
indices and use the notation \k and the superposed dot to indicate di}erentiation with respect to
the coordinate xk and time t\ respectively[ The contour for evaluation of the integrals is chosen
inside the super element around the crack tip as illustrated in Fig[ 4 by a thick solid line^ _ve
Gaussian integration points are used for each segment of the contour[ The contour passes through
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Fig[ 4[ Contour inside super element for calculation of J!integrals[

the elements which surround the four singular elements\ but the contour does not intersect the
damaged element[ Namely\ the integrals Jk must be evaluated for contours around the crack tip
from one crack surface to the other and the crack in the combined fracture:damage approach is
represented by a damage zone[ Thus\ the integration is performed from one side of the damaged
element through the undamaged material to the other side[ Excluding the line segment through
the damaged element can also be justi_ed by the following argument[ We have the relation "1# in
which the damage D increases and the stress s remains constant due to equilibrium[ As a result\
there is a large growth of the strain o in the damaged element and the corresponding line segment
would yield an unrealistically large\ disturbing contribution to the J!integrals[

The integrals Jk form a vector J � Jkek with the unit vectors e0 and e1 being tangential and
perpendicular to the crack path\ respectively[ Since the integrals have the dimension of energy per
unit area\ the vector can be interpreted as the energy ~ux into the crack tip per unit area of newly
crated crack surfaces[ A well!established criterion for situations of static fracture "Cherepanov\
0868# states that crack extension will occur when the length of the vector J reaches the critical
energy release rate GC\ a material constant\ while the crack extends in the direction u � up of this
vector[ So we may say that the vector J starts at the crack tip and points into the direction of crack
propagation[ The angle of crack propagation is then derived from

tan up �
J1

J0

[ "8#

The concept of the J!integrals has been developed further by Freund "0889# and Nishioka and
Atluri "0872# for situations of dynamic fracture[ Freund "0889# has proved that the energy release
rate G"c# for a crack propagating at speed c is equal to the energy release rate G"9# for a stationary
crack of the same length and subject to the same\ instantaneous loading conditions\ multiplied by
a universal function `"c# of the crack speed[ We take the length of the vector J as the energy release
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rate G"9# of the corresponding equilibrium situation with the stationary crack and impose that the
dynamic energy release rate G"c# equals the critical value GC[ We further assume that the crack
propagation is unstable[ Thus\ we obtain the following equation for the crack speed]

G"c# � `"c#zJ1
0¦J1

1 � GC\ "09#

where the function `"c# of the crack speed is given by

`"c# �"0−c:cR#z0−c:cd "00#

with 9 ¾ c ³ cR ³ cd and cd and cR being the dilatational wave speed and the Rayleigh wave speed\
respectively[ See also Freund "0889#\ van Vroonhoven "0885a#\ and van Vroonhoven and de Borst
"0886#[ The crack increment is calculated according to

xtip\new � xtip\old¦c = Dt\ "01#

where the length of the vector c equals the crack speed c and its direction is determined by the
angle up[ The time step Dt is subject to some restrictions in order to assure stability of the numerical
time integration scheme^ these restrictions are discussed in Section 3[

Alternatively\ the direction of crack propagation can be decided on the basis of a simpler\
{{engineering|| criterion] namely\ in the direction perpendicular to the largest principal stress[ To
this end\ the stress components sij "i\ j � 0\ 1 or x\ y# are calculated in all integration points of the
three undamaged singular elements in the super element[ Next\ the stresses are calculated in the
nodal points by a projection or extrapolation of the integration point stresses onto the nodes with
a weighting of the contributions of the adjacent elements[ These nodal point stresses are used to
calculate an averaged principal stress in the following manner[ We select the nodes in the super
element\ where the largest principal stress is positive and which are not part of the damaged
element\ and calculate the {{average stress tensor|| of the super element by averaging each stress
component sij over the selected nodes[ The eigenvalues "the principal stresses# of the averaged
stress tensor are denoted by s0 and s1 with s0 − s1[ Finally\ we de_ne the largest principal stress
of the super element as the largest eigenvalue s0 of the averaged stress tensor and take the direction
perpendicular to this largest principal stress as the direction of crack propagation[ This criterion
is consistent with observations in compression tests on concrete specimens\ where cracks grow
parallel to the direction of the largest compressive principal stress s1 with s1 ³ 9[ The crack speed
c is set equal to the Rayleigh wave speed cR and the relation "01# is used to determine the crack
increment[ The rough estimate of the Rayleigh wave speed is acceptable\ because we mostly observe
large value for the energy release rate in cases of dynamic fracture[ Thus\ the precise crack speed
will not di}er much from cR as can be seen from "09# and "00#[ When the largest principal stress is
negative\ we put c � 9 and crack arrest occurs[ The accuracy of this procedure is increased when
the stresses are also evaluated in the undamaged variable!node elements of the super element[ We
shall use this re_ned procedure and compare the results with those of the J!integral criterion[
Although the principal stress criterion has no profound basis in fracture mechanics\ it appears to
work rather well with reasonably accurate results for the crack patterns[ We note that it can be
worthwhile to investigate the possibilities of applying a similar engineering criterion based on
principal strain directions\ especially for the previously mentioned compression tests[
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2[2[ Extension to three dimensions

The combined fracture:damage approach can be extended to problems of crack propagation in
three dimensions\ with a restriction to thin plate!like structures having slight curvature and:or
slight thickness variations[ The division into _nite elements is chosen to have only one element
over the thickness of the plate[ The curvature of the surfaces and the variations in the thickness
are thus incorporated\ while the computing time for the assembly process is limited[ Using more
elements over the thickness would increase the assembly time proportionally[ Moreover\ tensile
forces and bending moments will be dominant in the loading of the plate[ Since the corresponding
internal stresses are constant or vary approximately linearly over the thickness of plate\ a further
re_nement of the element division in the thickness direction is not considered necessary[ A conse!
quence of this choice of one element over the thickness is that the crack front must be taken as a
straight line perpendicular to the middle plane of the plate[ In practical fracture problems\ however\
the crack front may attain a general curved shape in a perpendicular cross section of the plate\ due
to di}erent crack speeds in the upper and lower planes of the plate[ These e}ects are not incor!
porated and can only be calculated by time!consuming computations with more than one element
over the thickness[ Concerning the geometry of the plate!like structure\ we may certainly speak of
a three!dimensional analysis\ but regarding the fracture behaviour we employ the simpli_cation of
a crack which is uniform over the thickness with a straight crack front[ This simpli_ed crack
representation is su.ciently detailed in the plane of the plate and is capable of correctly analyzing
general crack propagation problems[

The extension of the two!dimensional super element to three dimensions is straightforward[ We
choose the eight!node brick elements of Wilson et al[ "0862# and Taylor et al[ "0865# with improved
bending behaviour to divide the geometry into subdomains[ The element division in the crack!tip
region is adapted in such a manner that the upper and lower planes of the plate have geometries
similar to the element division in Fig[ 2\ with the addition of 06 nodes in the upper plane and 06
nodes in the lower plane of the plate[ Five mid!side nodes are added in the middle plane of the
plate\ on the lines connecting the corner nodes in the lower and upper planes of the singular
elements\ including an extra node on the crack front[ Thus\ the crack!tip elements resemble the
element of Fig[ 0"b# and the surrounding elements are the variable!node elements of Hughes
"0876#[ The crack is represented by damaged elements having orthotropic constitutive behaviour
with their sti}ness reduced in the direction perpendicular to the crack surfaces[

The crack propagation criterion in three dimensions requires only little adaptation[ The integrals
Jk "k � 0\ 1# are evaluated by integration over a cylinder surrounding the crack tip[ The cross
sections of the cylinder in the upper and lower planes of the plate coincide with the contour
depicted in Fig[ 4[ Because of the integration over the plate thickness\ the in~uences of both tension
and bending are incorporated in the J!integrals and thus also in the crack propagation criterion[
We de_ne the vector J � Jkek "with summation over k � 0\ 1#\ where the unit vectors e0 and e1 are
tangential and perpendicular to the crack and e2 � e0×e1 is perpendicular to the plate[ The vector
J is thus\ in the tangent plane of the plate^ if this vector has a non!zero component normal to the
plate due to numerical round!o} errors\ we use its projection onto the tangent plane[ The crack
speed is now determined by equations "09# and "00# and the direction of crack propagation by "8#[

The criterion based on the largest principal stress is also extended to three dimensions[ The
stress components sij "i\ j � 0\ 1\ 2 or x\ y\ z# are calculated in the integration points of the
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undamaged elements of the super element\ analogous to the criterion in two dimensions[ This
procedure automatically includes thickness e}ects and the in~uence of possible bending moments[
The integration point stresses are projected or extrapolated to the nodal points and subsequently
averaged per component[ The eigenvalues of the averaged stress tensor are denoted by si "i � 0\
1\ 2# with s0 − s1 − s2[ The direction of crack propagation is again determined as perpendicular
to the direction of the largest eigenvalue s0 "the largest principal stress# of the averaged stress
tensor[ The crack propagation must also take place in the direction perpendicular to the vector e2

normal to the plane of the plate\ i[e[\ take place in the tangent plane of the plate[

3[ Time!step algorithm

3[0[ Explicit method

The discretization of the elastic body into subdomains " _nite elements# and the assembly of
all element contributions into global matrices and vectors leads to the following matrix!vector
equation

M = UÝ¦K = U � F\ "02#

where M is the mass matrix\ K is the sti}ness matrix\ and F is the right!hand side vector of the
prescribed forces[ The vector U � U"t# is the global vector of nodal displacements[ For the
numerical solution of this second!order di}erential equation\ we discretize the time interval in
_nite steps of size Dt and calculate the approximate solution on times tn � n Dt " for n � 9\ 0\ 1\
[ [ [#[ We choose an explicit method based on central di}erences[ The _rst!order and second!order
derivatives Uþ and U� of the global displacement vector are then approximated by

Uþ "tn¦"0:1## �
U"tn¦0#−U"tn#

Dt
\ "03#

UÝ "tn# �
Uþ "tn¦"0:1##−Uþ "tn−"0:1##

Dt
�

U"tn¦0#−1U"tn#¦U"tn−0#

"Dt#1
[ "04#

The truncation errors in these approximations are of the order O""Dt#1# for time steps Dt : 9\ so
that the central di}erence method is second!order accurate[ Substitution of "03# and "04# into "02#
produces the following time!step algorithm[ Firstly\ the acceleration vector is calculated]

M = UÝ "tn# � F"tn#−K = U"tn#[ "05#

Secondly\ the velocity and displacement vectors are updated]

Uþ "tn¦"0:1## � Uþ "tn−"0:1##¦DtUÝ "tn#\ "06#

U"tn¦0# � U"tn#¦DtUþ "tn¦"0:1##[ "07#

The initial values of the displacements and the velocities are assumed to be known] U"t9# � U9 and
Uþ "t9−"0:1## � Uþ9[

Since the truncation errors in "03# and "04# vanish in the limit as Dt : 9\ the time!step algorithm
"05#Ð"07# is consistent with the di}erential equation "02#[ Convergence of the solution is now
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assured when the algorithm satis_es the stability condition\ i[e[\ when small numerical errors are
not ampli_ed by taking one time step[ The central di}erence method is conditionally stable\ which
means that the time step must be su.ciently small[ We have the following restriction "Hughes\
0876#]

Dt ¾ Dtmax �
1
vh

\ "08#

where vh is the maximum natural frequency of vibration of the system represented by the equation
"02#[ This frequency depends on the element size h and the dilatational wave speed cd and is
proportional to cd:h[ The proportionality constant is related to the element type[ From the relation
"08# with vh ½ cd:h\ it is clear that the time step Dt is restricted by the smallest element in the entire
element division[

We can make an estimate of the maximum allowed time step in the combined approach[ Let us
denote the maximum time step for a four!node quadrangular element of size hq×hq by Dtq[ This
time step is calculated from an eigenvalue analysis of the element mass and sti}ness matrices[ The
critical time step in the combined approach is determined by the smallest side of the singular crack!
tip elements\ which has a length hs � hq:z1[ Hughes "0876# has derived estimates of the critical
time step for several elements\ e[g[\ Dtmax1 � h:cd for the two!node linear rod element\ and
Dtmax2 � h:z5 cd for the three!node quadratic rod element[ These estimates are extended to the
two! and three!dimensional elements in the following manner[ We regard the one!dimensional
estimate Dtmax1 with h � hq as a relative measure for the quadrangular or brick elements and Dtmax2

with h � hs as a relative measure for the singular elements[ Next\ we assume that the maximum
allowed time step in the combined fracture:damage approach is equal to the critical time step Dtq
of the quadrangular elements\ multiplied by the ratio Dtmax2:Dtmax1[ Thus\ we obtain

Dt ¾
Dtmax2

Dtmax1

Dtq �
hsDtq

hqz5
�

Dtq

1z2
� 9[178 Dtq[ "19#

Since this is a rough estimate\ we shall adopt Dt � 9[14 Dtq to assure the stability of the time!step
algorithm[ We note that this time step is one fourth of the time step for elasto!dynamic stress
calculations without fracture[ As a result\ the combined fracture:damage approach will require
approximately four times as many time steps than an elastodynamic calculation[

The solution for the acceleration vector UÝ "tn# in "05# is immediately obtained when the mass
matrix M is a diagonal matrix[ Since this is generally not the case\ we apply a so!called {{lumping||
technique[ The original mass matrix is replaced with the lumped matrix M	 which is de_ned by
placing the row sums on the diagonal]

M	 ij � 6
SkMik\ if i � j\

9\ otherwise[
"10#

The errors introduced by the lumping of the mass matrix tend to cancel the errors from the time
discretization "Hughes\ 0876#[ Since M	 is a diagonal matrix\ the solution of the eqn "05# does not
require the inversion of a matrix[ Thus\ the combination of the central di}erence method and the
lumping technique provides an accurate and e.cient time!step algorithm[ The disadvantage of
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conditional stability is not regarded as a major drawback\ because the time step should not be too
large in view of the truncation errors involved in "03# and "04# and thus also in "06# and "07#[

3[1[ Implicit method

The number of time steps can be decreased by the use of an implicit method for the time!step
algorithm\ because such methods are mostly unconditionally stable and do not impose a restriction
on the time step[ We choose the implicit a!method of Hilber et al[ "0866#\ which is also described
by Hughes "0876#[ When the displacements\ velocities\ and the accelerations at time tn are known\
these quantities at time tn¦0 are calculated from the equations

M = UÝ "tn¦0#¦"0¦a#K = U"tn¦0#−aK = U"tn# � F"tn¦0¦a Dt#\ "11#

U"tn¦0# � U"tn#¦DtUþ "tn#¦
0
1
"Dt#1 ð"0−1b#UÝ "tn#¦1bUÝ "tn¦0#Ł\ "12#

Uþ "tn¦0# � Uþ "tn#¦Dtð"0−g#UÝ "tn#¦gUÝ "tn¦0#Ł[ "13#

The a!method is unconditionally stable and second!order accurate when a $ð−0:2\ 9Ł\ b �"0−a#1:3
and g �"0−1a#:1[ It is assumed that the initial values of the displacements and the velocities\
U"t9# � U9 and Uþ "t9# � Uþ9\ are known[ The initial acceleration UÝ "t9# may be determined from "11#
with a � 9 and n � −0[ The advantage of unconditional stability is that there is no restriction on
the time step[ So\ we may choose larger time steps than in the explicit method\ which makes the
implicit method more suitable for the analysis of complex geometries with small elements[

The disadvantage of implicit methods is that a system of equations needs to be solved at every
time step[ The acceleration vector UÝ "tn¦0# is calculated\ for example\ by substitution of "12# into
"11# and by solution of the matrixÐvector equation with the use of direct or iterative techniques
"Golub and Van Loan\ 0872#[ This procedure requires extra computing time and diminishes the
gain of fewer time steps[ Moreover\ the mass matrix M and the sti}ness matrix K depend on the
time step because of the crack propagation and of the moving super element[ Consequently\ the
system of equations to be solved is di}erent at every time step[ For these reasons\ the implicit a!
method can be less suitable than the explicit method for systems with a large number of degrees
of freedom and with crack propagation[ The choice for an implicit method or an explicit method
is\ therefore\ dependent on the problem that is to be analyzed[

4[ Applications

The combined fracture:damage approach has been implemented in the programming environ!
ment MATLAB "0881#[ The generation of the _nite element division has been done with the use
of the program SEPMESH of the package SEPRAN "0882#[ Several tests have been performed to
investigate the accuracy and reliability of this approach and to compare the results obtained with
the two crack propagation criteria based on the J!integrals and on the largest principal stress[ The
results of these tests are discussed below[
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4[0[ Square plate

The _rst test concerns the possible dependence of the calculated crack patterns on the _nite
element division[ We study a square plate of size l×l and thickness h � l:3\ which is loaded by
uniform tensile forces or uniform bending moments on two opposite sides[ Thinner plates are not
considered\ because otherwise the critical time step becomes too small and impractical[ The plate
is divided into 09×09 or 05×05 elements with one element over the thickness[ The slanted
orientation of the element lines is at most 9[09 or 9[19\ which corresponds to inclination angles of
4[6> and 00[2>\ respectively[

A crack is initiated at the middle of one of the traction!free sides\ with an initial length 4
3
le with

le the element width[ We employ the explicit central!di}erence method as time!step algorithm and
we assign a small value to the fracture toughness to enforce crack propagation[ As a result\ the
crack speed is approximately equal to the Rayleigh wave speed cR and the crack increment to
Dx � cR Dt ¼ le:09[ The computation terminates\ when the crack path reaches the element on the
opposite traction!free side at the boundary of the plate and the construction of a super element is
not possible anymore[ The calculated crack patterns in the plate loaded by tensile forces are shown
in Fig[ 5 for the principal stress criterion and in Fig[ 6 for the J!integral criterion[ The results are
shown in the original element divisions for clarity[ The crack patterns in the plate loaded by
bending moments are similar to these results[ The crack propagation should occur along straight
lines\ because the uniform tensile forces lead to a symmetric situation in which only the crack!
opening mode "mode I# exists[ Similarly\ the uniform bending moments lead to a situation with
only the normal!bending mode "mode 0#[ For the de_nition of the tensile and bending fracture
modes we refer to Cherepanov "0868# and van Vroonhoven "0885a#[

Regarding the crack patterns in Figs 5 and 6\ we observe that the end points of the crack paths
are always within one element from the prospective end points "marked by ×#\ which is considered
as su.ciently accurate[ We also observe that the results for the J!integral criterion are more
sensitive to the skewed orientation of the element division than those for the principal stress
criterion[ This can be explained by the following argument[ The contour for the computation of
the J!integrals consists of seven segments "see Fig[ 4#\ where _ve Gaussian integration points are
used per segment in the circumferential direction and _ve in the thickness direction of the plate[
This sums up to a total of 064 points where the stresses are evaluated[ The criterion based on the
largest principal stress uses the average of the stress tensors evaluated in all Gaussian integration
points of ten elements\ which yields a total of 09×16 � 169 points[ This higher number of points
for stress evaluation may explain the better performance of the principal stress criterion[ The
accuracy of the J!integral can be improved by taking a contour at larger distance from the crack
tip\ but then the algorithm needs more computing time and becomes less e.cient[ Although the
crack propagation criterion based on the "averaged# largest principal stress has no solid foundation
in fracture mechanics\ we conclude that this criterion produces the best results for the crack
patterns[

4[1[ Sin`le!ed`e notched beam

The second test is a single!edge notched shear beam "Iosipescu\ 0856#\ which is a suitable test
for a study of curvilinear crack propagation under shear loads[ We adopt the same specimen
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Fig[ 5[ Crack patterns in a square plate loaded by uniform tensile forces\ for various element divisions[ Subsequent
positions of the crack tip are shown by � and the prospective end point of the crack by ×[ Crack propagation criterion
is based on largest principal stress[

dimensions as Feenstra "0882# and Schlangen "0882#\ viz[ a length of 339 mm\ a height of 099 mm\
and a thickness of 09 mm[ The forces F0 are applied at a distance of 19 mm from the plane of
symmetry and the forces F1 � F0:09 at a distance of 199 mm[ The element division consists of 163
elements and is chosen such that the crack is not initiated at the boundary between two elements
but in the interior of an element[ The initial crack has a length of "a# 04 mm or "b# 14 mm and is
located at the middle of the longest edge of the beam[ The shear deformation leads to a situation
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Fig[ 6[ Crack patterns in a square plate loaded by uniform tensile forces for various element divisions[ Subsequent
positions of the crack tip are shown by � and the prospective end point of the crack by ×[ Crack propagation criterion
is based on J!integrals[

where the crack!opening mode and the sliding mode are combined "modes I and II#[ We employ
the implicit a!method with a � −9[2 and use the crack propagation criterion based on the largest
principal stress[

The obtained crack paths are shown in Fig[ 7 and satisfy the requirement that the end points
are on the opposite edge of the beam to the right of the point where the force F0 is applied
"Schlangen\ 0882#[ Taking other time!step sizes leads to similar but not identical crack paths[
Nevertheless\ all crack paths lie within a small band around the paths shown in the _gure and
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Fig[ 7[ Crack patterns in a single!edge notched beam loaded under shear conditions\ for di}erent initial crack lengths[
Subsequent positions of the crack tip are shown by �[

always satisfy the requirement for the end point[ The calculated crack patterns agree with the
results of Feenstra "0882# and Schlangen "0882# and also with those of Lubliner et al[ "0878# and
Rots "0880# who have applied a plastic fracture mechanism and a smeared crack representation\
respectively[ No acceptable results have been obtained with the use of the crack propagation
criterion based on the J!integrals\ which is due to the dominance of mode II in the early stage of
fracture[ This is a well!known problem of the J!integral criterion "Cherepanov\ 0868#[

4[2[ Hollow cylindrical pipe

The third test concerns three!dimensional crack propagation in a hollow cylindrical pipe which
is loaded by torsional moments at its ends[ The pipe has a length 399 mm and inner and outer
radii of 29 and 39 mm\ respectively\ such that the pipe thickness equals 09 mm[ The division into
_nite elements contains 14 elements in the axial direction\ 21 elements in the circumferential
direction\ and one element over the thickness[ The division must have su.cient re_nement for the
construction of the super element[ Otherwise\ for coarser divisions\ the added {{slave|| nodes of the
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Fig[ 8[ Crack pattern in a pipe loaded by torsional moments[ Initial crack is at middle of side view and at top of cross!
sectional view[ Subsequent positions of the crack tip "into two directions# are shown by �[

super element can lie outside the domain occupied by the pipe due to the interpolation between
the {{master|| nodes and due to the curvature of the elements and of the pipe surfaces[

A crack is initiated in the middle cross section of the pipe with initial length equal to 2:3 of the
element size in the circumferential direction "approx[ 3[47 mm#[ We use the explicit time!step
algorithm in combination with the crack propagation criterion based on the largest principal stress\
since the fracture process begins in mode II[ Because of the restricted time step\ the crack increments
are approximately equal to 9[26 mm[ We calculate the crack paths in two symmetric directions
and terminate the calculation after 199 time steps[ The results are shown in Fig[ 8 for every tenth
time step[

We observe some deviations in the crack pattern near the upper and lower boundaries in the
side view of the pipe[ These deviations are related to the plane drawing of the three!dimensional
geometry and to the fact that the crack starts to propagate in the direction perpendicular to the
axis of the pipe[ At that moment\ one half of the cross section has fractured and the pipe reaches
the point of _nal collapse[ Globally\ the obtained crack paths are at an angle of 34> with the axial
direction\ which agrees with predictions based on the experimental results of Richard "0876# and
on the analyses of Lakshminarayana and Murthy "0865#[

5[ Conclusions

The combined approach presented in this paper is based on the _nite element method and
combines the advantages of fracture mechanics and continuum damage mechanics[ After the
initialization of a crack and during the fracture simulation\ a super element surrounding the crack
tip is constructed and the crack path is modelled by softening elements[ The singular crack!tip
elements with quarter!point nodes provide su.cient accuracy for the calculation of the near!tip
solution and the crack propagation[ The representation of the crack by orthotropic softening
elements provides su.cient ~exibility to the approach and diminishes the necessary adaptations
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of the _nite element division[ The rest of the structure is divided with the use of the so!called
WilsonÐTaylor elements\ in order to prevent the system of equations from having excessive sti}ness
in situations with bending deformation[ The crack propagation is decided on the basis of either
the J!integrals or the largest principal stress in the crack!tip region[ The former criterion has a
profound basis in fracture mechanics and the latter one is based on a practical engineering rule[

The combined fracture:damage approach has been applied to a square plate loaded by tensile
forces or bending moments\ a single!edge notched beam subjected to shear\ and a hollow cylindrical
pipe subjected to torsion[ Since damage mechanics methods are often sensitive to variations in the
element division\ possible element dependencies have been investigated[ No serious dependencies
on the element size or on the element orientation have been observed\ although the results obtained
with the principal stress criterion tend to be less sensitive to such variations than those obtained
with the J!integral criterion[ The results show that the calculated crack paths are always accurate
within one element from the theoretical crack paths[ This concerns both single!mode fracture
"tension mode I or bending mode 0# and mixed!mode fracture "combination of tension mode I
and shear mode II#[ The combined approach can also be applied to three!dimensional problems
with dynamic loading and:or dynamic failure[

Acknowledgements

The authors wish to thank Dr J[ Horsten "Philips Centre for Manufacturing Technology# for
his contributions on numerical methods\ and Prof[ J[ Boersma and Dr A[ A[ F[ van de Ven
"Eindhoven University of Technology\ Faculty of Mathematics# for many helpful and stimulating
discussions[

References

Barsoum\ R[ S[ "0865# On the use of isoparametric _nite elements in linear fracture mechanics[ International Journal of
Numerical Methods in En`ineerin` 09\ 14Ð26[

Baz³ant\ Z[ P[ and Cedolin\ L[ "0880# Stability of Structures[ Elastic\ Inelastic\ Fracture\ and Dama`e Theories[ Oxford
University Press\ New York[

de Borst\ R[ "0882# A generalisation of J1 ~ow theory for polar continua[ Computer Methods in Applied Mechanics and
En`ineerin` 092\ 236Ð251[

de Borst\ R[\ Sluys\ L[ J[\ Mu�hlhaus\ H[!B[ and Pamin\ J[ "0882# Fundamental issues in _nite element analysis of
localization of deformation[ En`ineerin` Computations[ 09\ 88Ð010[

Broek\ D[ "0875# Elementary En`ineerin` Fracture Mechanics[ Kluwer Academic Publishers\ Dordrecht\ The Nether!
lands[

Chaboche\ J[ L[ "0870# Continuum damage mechanics*a tool to describe phenomena before crack initiation[ Nuclear
En`ineerin` and Desi`n 53\ 122Ð136[

Chaboche\ J[ L[ "0877a# Continuum damage mechanics] part I*general concepts[ ASME Journal of Applied Mechanics
44\ 48Ð53[

Chaboche\ J[ L[ "0877b# Continuum damage mechanics] part II*damage growth\ crack initiation\ and crack growth[
ASME Journal of Applied Mechanics 44\ 54Ð61[

Cherepanov\ G[ P[ "0868# Mechanics of Brittle Fracture[ McGraw!Hill\ New York[
England\ A[ H[ "0854# A crack between dissimilar media[ ASME Journal of Applied Mechanics 21\ 399Ð391[



J[C[W[ van Vroonhoven\ R[ de Borst : International Journal of Solids and Structures 25 "0888# 0058Ð00800089

Feenstra\ P[ H[ "0882# Computational Aspects of Biaxial Stress in Plain and Reinforced Concrete[ Ph[D[ thesis\ Delft
University of Technology\ The Netherlands[

Freund\ L[ B[ "0889# Dynamic Fracture Mechanics[ Cambridge University Press\ Cambridge[
Golub\ G[ H[ and Van Loan\ C[ F[ "0872# Matrix Computations[ North Oxford Academic\ Oxford[
Hilber\ H[ M[\ Hughes\ T[ J[ R[ and Taylor\ R[ L[ "0866# Improved numerical dissipation for time integration algorithms

in structural dynamics[ Earthquake En`ineerin` and Structural Dynamics 4\ 172Ð181[
Horsten\ J[ and van Vroonhoven\ J[ "0883# A hybrid fracture!damage propagation model[ Localized Dama`e III\

Computer!Aided Assessment and Control[ Proceedings of the 2rd International Conference on Localized Damage\
Udine\ Italy\ pp[ 256Ð263[

Hughes\ T[ J[ R[ "0876# The Finite Element Method[ Linear Static and Dynamic Finite Element Analysis[ Prentice!Hall\
Englewood Cli}s\ NJ[

Iosipescu\ I[ "0856# New accurate procedure for single shear testing of metals[ Journal of Materials 1\ 426Ð455[
Kachanov\ L[ M[ "0847# The time to fracture under creep conditions "translation from Russian#[ Izvestia� Akademia

Nauk SSSR\ Otdel[ Tekhn[ Nauk 7\ 15Ð20[
Lakshminarayana\ H[ V[ and Murthy\ M[ V[ V[ "0865# On stresses around an arbitrarily oriented crack in a cylindrical

shell[ International Journal of Fracture 01\ 436Ð455[
Lasry\ D[ and Belytschko\ T[ "0877# Localization limiters in transient problems[ International Journal of Solids and

Structures 13\ 470Ð486[
Lemaitre\ J[ "0873# How to use damage mechanics[ Nuclear En`ineerin` and Desi`n 79\ 122Ð134[
Lubliner\ J[\ Oliver\ J[\ Oller\ S[ and On½ate\ E[ "0878# A plastic!damage model for concrete[ International Journal of

Solids and Structures 14\ 188Ð215[
MacNeal\ R[ H[ "0883# Finite Elements] Their Desi`n and Performance[ Marcel Dekker\ New York[
MATLAB[ "0881# Hi`h!Performance Numeric Computation and Visualization Software[ Reference Guide[ The

MathWorks\ Natick\ MA[
Mu�hlhaus\ H[!B[ "0878# Application of Cosserat theory in numerical solutions of limit load problems[ In`enieur Archiv

48\ 013Ð026[
Murakami\ S[ "0877# Mechanical modelling of material damage[ ASME Journal of Applied Mechanics 44\ 179Ð175[
Needleman\ A[ "0877# Material rate dependence and mesh sensitivity in localization problems[ Computer Methods in

Applied Mechanics and En`ineerin` 56\ 58Ð74[
Nishioka\ T[ and Atluri\ S[ N[ "0872# Path!independent integrals\ energy release rates\ and general solutions of near!tip

_elds in mixed!mode dynamic fracture mechanics[ En`ineerin` Fracture Mechanics 07\ 0Ð11[
Nishioka\ T[\ Murakami\ R[ and Takemoto\ Y[ "0889# The use of the dynamic J integral "J?# in _nite!element simulation of

Mode I and mixed!mode dynamic crack propagation[ International Journal of Pressure Vessels and Pipin` 33\ 218Ð241[
Rice\ J[ R[ "0857# A path independent integral and the approximate analysis of strain concentration by notches and

cracks[ ASME Journal of Applied Mechanics 24\ 268Ð275[
Richard\ H[ A[ "0876# Safety estimation for construction units with cracks under complex loading[ Structural Failure\

Product Reliability and Technical Insurance\ ed[ H[ P[ Rossmanith\ pp[ 312Ð326[ Interscience Enterprises\ Geneva[
Rots\ J[ "0880# Smeared and discrete representations of localized fracture[ International Journal of Fracture 40\ 34Ð48[
Schlangen\ E[ "0882# Experimental and numerical analysis of fracture processes in concrete[ Ph[D[ thesis\ Delft University

of Technology\ The Netherlands[
SEPRAN[ "0882# Sepra Analysis[ Users Guide and Pro`rammers Manual[ Ingenieursbureau Sepra\ Leidschendam\ The

Netherlands[
Sluys\ L[ J[ "0881# Wave propagation\ localisation and dispersion in softening solids[ Ph[D[ thesis\ Delft University of

Technology\ The Netherlands[
Stern\ M[ "0868# Families of consistent conforming elements with singular derivative _elds[ International Journal of

Numerical Methods in En`ineerin` 03\ 398Ð310[
Stern\ M[ and Becker\ E[ B[ "0867# A conforming crack tip element with quadratic variation in the singular _elds[

International Journal of Numerical Methods in En`ineerin` 01\ 168Ð177[
Taylor\ R[ L[\ Beresford\ P[ J[ and Wilson\ E[ L[ "0865# a non!conforming element for stress analysis[ International

Journal of Numerical Methods in En`ineerin` 09\ 0100Ð0108[
van Vroonhoven\ J[ C[ W[ "0885a# Dynamic crack propagation in brittle materials] analyses based on fracture and

damage mechanics[ Ph[D[ thesis\ Eindhoven University of Technology\ The Netherlands[



J[C[W[ van Vroonhoven\ R[ de Borst : International Journal of Solids and Structures 25 "0888# 0058Ð0080 0080

van Vroonhoven\ J[ C[ W[ "0885b# Uncoupled dynamic fracture approach[ Mechanisms and Mechanics of Dama`e and
Failure[ Proceedings of the 00th European Conference on Fracture ECF!00\ Poitiers\ France\ pp[ 344Ð359[

van Vroonhoven\ J[ C[ W[ and de Borst\ R[ "0886# Uncoupled numerical method for fracture analysis[ International
Journal of Fracture 73\ 064Ð089[

van Vroonhoven\ J[ C[ W[ and Horsten\ J[ B[ A[ M[ "0855# Hybrid fracture:damage approach[ Mechanisms and
Mechanics of Dama`e and Failure[ Proceedings of the 00th European Conference on Fracture ECF!00\ Poitiers\
France\ pp[ 864Ð879[

Wilson\ E[ L[\ Taylor\ R[ L[\ Doherty\ W[ P[ and Ghaboussi\ J[ "0862# Incompatible displacement models[ Numerical
and Computer Methods in Structural Mechanics\ eds[ S[ J[ Fenves\ N[ Perrone\ A[ R[ Robinson and W[ C[ Schnobrich\
pp[ 32Ð46[ Academic Press\ New York[


